About
I am an Astronomy and Machine Learning researcher at the Kavli Institute for
Particle Astrophysics and Cosmology (KIPAC) at Stanford University. As
a KIPAC Fellow, my main research interest is to develop and apply statistical and ai methods to help deepen our
understanding of the structure of the Milky Way and the Cosmos.
I am particularly interested in 3D mapping of the interstellar medium and use ML to push it to unprecedented scales
in both size and resolution, and to incorporate multiple additional tracers enabling a more comprehensive picture of
local structures. This aims to shed light on the mechanisms of star formation and galaxy dynamics across scales only
accessible through our unique vantage point within the Galaxy.
I did my PhD and a followup Postdoc in Germany at the
Faculty of Physics at Ludwig-Maximilians-University and the
Max-Planck-Institute for Astrophysics where I worked on probabilistic
ML and numerical inference methods and contributed to applications ranging from radio interferometry, X- and
gamma-ray imaging, Cosmic Ray air-shower reconstructions, and 3d maps of the dust and gas content of our local
Galactic neighborhood.
Publications
See also: Google Scholar
First author
- Geometric Variational Inference and Its Application to Bayesian Imaging; Frank, P.; Phys. Sci. Forum 2022,
5(1), 6. doi.
- Variable structures in M87* from space, time and frequency resolved interferometry; Arras*, P., Frank*, P.,
Haim*, P., Knollmüller*, J., Leike*, R., Reinecke, M., Enßlin, T.A.; Nature Astron (2022) (*shared
first authors). arXiv, doi, code, data products.
- Geometric variational inference; Frank, P., Leike, R., and Enßlin, T.A.; Entropy 2021, 23, 853. arXiv, doi, cover story.
- Field dynamics inference for local and causal interactions; Frank, P., Leike, R., and Enßlin, T.A.;
Annalen der Physik 2021, 533, 2000486. arXiv, doi.
- Field dynamics inference via spectral density estimation; Frank, P., Steininger, T., and Enßlin, T.A.;
Physical Review E 2017, 96, 052104. arXiv, doi.
- SOMBI: Bayesian identification of parameter relations in unstructured cosmological data; Frank, P., Jasche,
J., and Enßlin, T.A.; Astronomy & Astrophysics 2016, 595, A75. arXiv, doi.
Preprints
- Probabilistic simulation of partial differential equations; Frank, P., Enßlin, T.A.; ArXiv preprints 2020,
arXiv:2010.06583. arXiv.
Co-author
- Towards a Field Based Bayesian Evidence Inference from Nested Sampling Data; Westerkamp, M., Roth, J.,
Frank, P., Handley, W., Enßlin, T.A.; Entropy 2024, 26(11), 930.
arXiv,
doi.
- fast-resolve: Fast Bayesian Radio Interferometric Imaging; Roth, J., Frank, P., Bester, H.L., Smirnov, O.M.,
Westermann, R., Enßlin, T.A.; Astronomy & Astrophysics 2024, 690, A387. arXiv, doi.
- Disentangling the Faraday rotation sky; Hutschenreuter, S., Haverkorn, M., Frank, P., Raycheva, N.C.,
Enßlin, T.A.; Astronomy & Astrophysics 2024, 690, A314. arXiv, doi.
- Non-parametric Bayesian reconstruction of Galactic magnetic fields using Information Field Theory: The
inclusion of line-of-sight information in ultra-high energy cosmic ray backtracking; Tsouros, A., Bendre,
A.B., Edenhofer, G., Enßlin, T.A., Frank, P., Mastorakis, M., Pavlidou, V.; Astronomy & Astrophysics 2024,
690, A102. arXiv, doi.
- Re-Envisioning Numerical Information Field Theory (NIFTy.re): A Library for Gaussian Processes and
Variational Inference; Edenhofer, G., Frank, P., Roth, J., Leike, R.H., Guerdi, M., Scheel-Platz, L.I.,
Guardiani, M., Eberle, V., Westerkamp, M., Enßlin, T.A.; Journal of Open Source Software, 9(98),
6593. arXiv, doi.
- A Parsec-Scale Galactic 3D Dust Map out to 1.25 kpc from the Sun; Edenhofer, G., Zucker, C., Frank, P.,
Saydjari, A.K., Speagle, J.S., Finkbeiner, D., Enßlin, T.A.; Astronomy & Astrophysics 2024, 685, A82.
arXiv, doi, data products.
- First spatio-spectral Bayesian imaging of SN1006 in X-ray; Westerkamp, M., Eberle, V., Guardiani, M., Frank,
P., Platz, L., Arras, P., Knollmüller, J., Stadler, J., Enßlin, T.A., Astronomy & Astrophysics 2024, 684,
A155. arXiv, doi.
- Attention to Entropic Communication; Enßlin, T.A., Weidinger, C., Frank, P.; Annalen der Physik 2024,
2300334. arXiv, doi.
- Introducing LensCharm - A charming Bayesian strong lensing reconstruction framework; Rüstig, J., Guardiani,
M., Roth, J., Frank, P., Enßlin, T.A.; Astronomy & Astrophysics 2024, 682, A146. doi, code.
- Inferring Evidence from Nested Sampling Data via Information Field Theory; Westerkamp, M., Roth, J., Frank,
P., Handley, W., Enßlin T.A.; Phys. Sci. Forum 2023, 9(1), 19. arXiv, doi.
- Multi-Component Imaging of the Fermi Gamma-ray Sky in the Spatio-spectral Domain; Platz, L.I., Knollmüller,
J., Arras, P., Frank, P., Reinecke, M., Jüstel, D., Enßlin, T.A.; Astronomy & Astrophysics 2023, 680,
A2. arXiv, doi, data products.
- Butterfly Transforms for Efficient Representation of Spatially Variant Point Spread Functions in Bayesian
Imaging; Eberle, V.; Frank, P.; Stadler, J.; Streit, S.; Enßlin, T.A.; Entropy 2023, 25(4), 652. doi.
- Analysis of Dynamical Field Inference in a Supersymmetric Theory; Westerkamp, M.; Ovchinnikov, I.; Frank, P;
Enßlin, T.A.; Phys. Sci. Forum 2022, 5(1), 27. doi.
- Towards Moment-Constrained Causal Modeling; Guardiani, M., Frank, P., Kostić, A., Enßlin, T.A.; Phys.
Sci. Forum 2022, 5(1), 7. doi.
- Efficient Representations of Spatially Variant Point Spread Functions with Butterfly Transforms in Bayesian
Imaging Algorithms; Eberle, V.; Frank, P.; Stadler, J.; Streit, S.; Enßlin, T.A.; Phys. Sci. Forum 2022,
5(1), 33. doi.
- Dynamical field inference and supersymmetry; Westerkamp, M., Ovchinnikov, I., Frank, P., Enßlin, T.A.;
Entropy 2021, 23, 1652. arXiv, doi.
- Probabilistic Autoencoder using Fisher Information; Zacherl, J., Frank, P., and Enßlin, T.A.; Entropy
2021, 23, 1640. arXiv, doi.
- Bayesian decomposition of the Galactic multi-frequency sky using probabilistic autoencoders; Milosevic, S.,
Frank, P., Leike, R., Müller, A., Enßlin, T.A.; Astronomy & Astrophysics 2021, 650, A100. arXiv, doi, data products.
- Reconstructing non-repeating radio pulses with Information Field Theory; Welling, C., Frank, P., Enßlin,
T.A., and Nelles, A.; Journal of Cosmology and Astroparticle Physics 2021, 04, 071. arXiv, doi.
- Non-parametric Bayesian Causal Modeling of the SARS-CoV-2 Viral Load Distribution vs. Patient's Age;
Guardiani, M., Frank, P., Kostić, A., Edenhofer, G., Roth, J., Uhlmann, B., Enßlin, T.A.; PLoS ONE 17(10):
e0275011. arXiv, doi
- Unified radio interferometric calibration and imaging with joint uncertainty quantification; Arras, P.,
Frank, P., Leike, R., Westermann, R., Enßlin, T.A.; Astronomy & Astrophysics 2019, 627, A134. arXiv, doi.
- Nifty5: Numerical information field theory v5; Arras, P., Baltac, M., Enßlin, T.A., Frank, P.,
Hutschenreuter, S., Knollmüller, J., Leike, R., Newrzella, M., Platz, L., Reinecke, M., Stadler, J.;
Astrophysics Source Code Library 2019, ascl: 1903.008. ascl,
repository.
- NIFTy 3 - Numerical Information Field Theory: A Python Framework for Multicomponent Signal Inference on HPC
Clusters; Steininger, T., Dixit, J., Frank, P., Greiner, M., Hutschenreuter, S., Knollmüller, J., Leike, R.,
Porqueres, N., Pumpe, D., Reinecke, M., Šraml, M., Varady, C., Enßlin, T.A.; Annalen der Physik 2019, 531,
1800290. arXiv, doi.
- Sharpening up Galactic all-sky maps with complementary data - A machine learning approach; Müller, A.,
Hackstein, M., Greiner, M., Frank, P., Bomans, D.J., Dettmar, R., Enßlin, T.A.; Astronomy & Astrophysics
2018, 620, A64. arXiv, doi, data products.
- STARBLADE: STar and Artefact Removal with a Bayesian Lightweight Algorithm from Diffuse Emission;
Knollmüller, J., Frank, P., Enßlin, T.A.; Astrophysics Source Code Library 2018, ascl: 1805.009. ascl, repository.
Preprints
- Bayesian Multi-wavelength Imaging of the LMC SN1987A with SRG/eROSITA, Eberle, V., Guardiani, M.,
Westerkamp, M., Frank, P., Freyberg, M., Salvato, M., Enßlin, T.A.; ArXiv preprints 2024, arXiv:2410.14599
. arXiv.
- Electric Field Reconstruction with Information Field Theory, Strähnz, S., Huege, T., Frank, P., Enßlin,
T.A.; ArXiv preprints 2024, arXiv:2409.14970. arXiv.
- J-UBIK: The JAX-accelerated Universal Bayesian Imaging Kit; Eberle, V., Guardiani, M., Westerkamp, M.,
Frank, P., Rüstig, J., Stadler, J., Enßlin, T.A.; ArXiv preprints 2024, arXiv:2409.10381. arXiv.
- Spatially Coherent 3D Distributions of HI and CO in the Milky Way; Söding, L., Edenhofer, G., Enßlin, T.A.,
Frank, P., Kissmann, R., Minh Phan, V.H., Ramírez, A., Zhandinejad, H., Mertsch, P.; ArXiv preprints 2024,
arXiv:2407.02859. arXiv.
- The influence of the 3D Galactic gas structure on cosmic-ray transport and gamma-ray emission; Ramírez, A.,
Edenhofer, G., Enßlin, T.A., Frank, P., Mertsch, P., Minh Phan, V.H., Söding, L., Zhandinejad, H., Kissmann,
R.; ArXiv preprints 2024, arXiv:2407.02410. arXiv.
- Measurement in a Unitary World; Johnson, V., Leike, R., Frank, P., Enßlin, T.A.; ArXiv preprints 2022,
arXiv:2212.03829. arXiv.
- Sparse Kernel Gaussian Processes through Iterative Charted Refinement (ICR); Edenhofer, G., Leike, R.H.,
Frank, P., Enßlin, T.A.; ArXiv preprints 2022, arXiv:2206.10634. arXiv.
- The Galactic 3D large-scale dust distribution via Gaussian process regression on spherical coordinates;
Leike, R.H., Edenhofer, G., Knollmüller, J., Alig, C., Frank, P., Enßlin, T.A.; ArXiv preprints 2022,
arXiv:2204.11715. arXiv, data products.
- Separating diffuse from point-like sources-a Bayesian approach; Knollmüller, J., Frank, P., Enßlin, T.A.;
ArXiv preprints 2018, arXiv:1804.05591. arXiv.
Theses
- PhD thesis (Dissertation); Approximate inference in astronomy; 2021; doi.
- Master thesis; Field dynamics inference via spectral density
estimation; 2018; pdf.
- Bachelor thesis; Self Organizing Maps and Bayesian Inference in
cosmology; 2015; pdf.
Teaching
- Guest Lecturer @ Yale University: Astro 330: Scientific Computing in Astrophysics; April 10,
2024; Yale University, New Haven, CT, US.
- Lecturer in block course: Principles of Imaging for Radio Astronomy; February 5-16, 2024; AIMS:
African Institute for Mathematical Sciences, Muizenberg Cape Town, South Africa.
Co-Supervised Master Students
- Martin Reiß; Polarimetric Tomography of Galactic Dust.
- David Gorbunov; Density reconstruction using Geometric Variational Inference.
- Johannes Zacherl; Probabilistic Autoencoder using Fisher Information.
- Matteo Guardiani; Non-parametric Bayesian Causal Modeling of the SARS-CoV-2 Viral Load Distribution
vs. Patient's Age.
- Vincent Eberle; Efficient representation of Instrument Responses.
- Sara Milosevic; Astrophysical data analysis with variational autoencoders.
- Margret Westerkamp; Dynamical Field Inference via Ghost Fields.
- Morten Giese; Inference of the atmospheric electron density with LOFAR data.
Tutoring
School teaching
Talks, Conferences & Workshops
(Co-)Organized Workshops
- ErUM-Data Workshop on Inverse Problems, Max-Planck-Institute for Astrophysics, December 05-06, 2023; event.
- 1st ErUM-IFT Collaboration Meeting, Max-Planck-Institute for Astrophysics, November 20 - December 01,
2023; event.
- M2FINDERS Workshop: Bayesian Imaging Algorithm resolve Workshop II, Max-Planck-Institute for
Radioastronomy, October 24-27, 2023; event, resources.
Invited talks
- Institute Seminar, Institute for Astroparticle Physics, Karlsruhe Institute of Technology, June 27, 2024,
Karlsruhe, Germany.
- Seminar, Bielefeld University, June 24, 2024, Bielefeld, Germany.
- Bayes Forum, Max-Planck-Institute for Astrophysics, June 14, 2024, Garching, Germany; event.
- ECAP Seminar, Erlangen Centre for Astroparticle Physics, June 7, 2024, Erlangen, Germany; event.
- AstroAi Lunch Talk, Center for Astrophysics, Harvard & Smithsonian, April 15, 2024, Cambridge, MA, US.
- KIPAC Tea Talk, Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, April 02,
2024, California, US; event.
- KICP seminar, Kavli Institute for Cosmological Physics (KICP), University of Chicago, March 28, 2024,
Chicago, US; event.
- Colloquium, Hamburg Observatory, March 20, 2024, Hamburg, Germany.
- Institute Seminar, Max-Planck-Institute for Astrophysics, October 2, 2023, Garching, Germany; event, pdf.
- LMU seminar: Signal reconstruction with Python, Max-Planck-Institute for Astrophysics, September 27, 2023,
Garching, Germany; event,
pdf.
- IA-FORTH seminar, FORTH Institute of Astrophysics, September 13, 2023, Crete, Greece; event, pdf, recording.
- VLTI and ALMA Synthesis Imaging Workshop, European Southern Observatory, January 9-12, 2023, Garching,
Germany; event, pdf.
- iid2022: Statistical Methods for Event Data, Lake Guntersville State Park, November 15-18, 2022,
Guntersville, AL; event, pdf, tutorial, resources.
- Seminar, MIT Haystack Observatory, November 9, 2022, Westford, MA, USA; pdf.
- NIFTy tutorial, MIT Haystack Observatory, November 9, 2022, Westford, MA, USA; pdf, resources .
- NIFTy tutorial, Black Hole Initiative - Harvard University, November 8, 2022, Cambridge, MA, USA; pdf, resources .
- Group Seminar, Black Hole Initiative - Harvard University, November 7, 2022, Cambridge, MA, USA; pdf.
- LMU seminar: Signal reconstruction with Python, Max-Planck-Institute for Astrophysics, September 21, 2022,
Garching, Germany; pdf.
- Probabilistic Variational Autoencoders, Berlin Machine Learning Group, February 07, 2022, Berlin, Germany;
(remote) Event
Webpage, Recording, pdf.
- LMU seminar: Signal reconstruction with Python, Max-Planck-Institute for Astrophysics, September 30, 2021,
Garching, Germany; pdf.
- ODSL Journal Club, Excellence Cluster Origins, July 16, 2021, Garching, Germany; pdf.
- Seminar, Center for Astrophysics, Jun 28, 2021, Cambridge, Massachusetts, United States; (remote)
pdf.
- Institute Seminar, Max-Planck-Institute for Astrophysics, May 4, 2020, Garching, Germany; pdf.
Conferences & Workshops
- GaGaDiCT workshop, March 4-8, 2024, RWTH Aachen University, Aachen, Germany; event.
- DIG-UM Big Data Analytics Workshop, February 29 - March 1, 2024, Frankfurt Institute of Advanced Studies
(FIAS), Frankfurt, Germany; event.
- The Road to Differentiable and Probabilistic Programming in Fundamental Physics, MIAPbP Munich Institute
for Astro-, Particle and BioPhysics, Excellence Cluster ORIGINS, Max Planck Institute for Extraterrestrial
Physics, June 26-28, 2023, Garching, Germany; event, talk.
- IMAGINE workshop: Towards a comprehensive model of the galactic magnetic field, Nordita, April 3-28, 2023,
Stockholm, Sweden; event, talk, gp session, tutorial.
- Wissenschaftskonferenz: Science from Space, German Aerospace Center (DLR), September 27-28, 2022, Bonn,
Germany; event.
- SOcraSCALES Workshop, MIAPbP Munich Institute for Astro-, Particle and BioPhysics, Excellence Cluster
ORIGINS, September 5-16, 2022, Garching, Germany; event, pdf.
- 41st MaxEnt2022 Conference, Institute Henri Poincaré, July 18-22, 2022, Paris, France; event, pdf.
- ngEHT Meeting: "Assembling the ngEHT", June 22-25, 2022, Granada, Spain; event, resources,
pdf.
- NIFTy tutorial at "Astroparticle School", Erlangen Center for Astroparticle Physics, October 2-10, 2019,
Obertrubach-Bärnfels, Germany; event, resources.
- NIFTy tutorial at "Big Data Science in Astroparticle Research", RWTH Aachen University SuperC, February
18-20, 2019, Aachen, Germany; event, resources.
- Bayesian inference meets radio reality, Max-Planck-Institute for Astrophysics, July 15-20, 2018, Garching,
Germany; event.
- Interdisciplinary Cluster Workshop "Challenges in statistical inference", Excellence Cluster Universe,
November 7-9, 2016, Garching, Germany; event, pdf.
Software
Data products
- Dataset for the 1.25 kpc 3D Dust Map and the 2 kpc 3D Dust Map: doi.
- 3D Distributions of HI and CO in the Milky Way: doi.
- The Galactic Cartography Portal: website.
- Spatio-spectral multi-component maps of the Fermi gamma-ray sky: doi.
- Decomposition of the Galactic multi-frequency sky with autoencoders: doi.
- Time-resolved reconstruction of the Black hole shadow of M87*: doi.
- Sharpening up Galactic all-sky maps with complementary data - A machine learning approach: resources.
Impressum, Datenschutzerklärung, Haftungsausschluss